

High-Mass Resonances Decaying to Muon Pairs

Experimental Aspects in the CMS Experiment

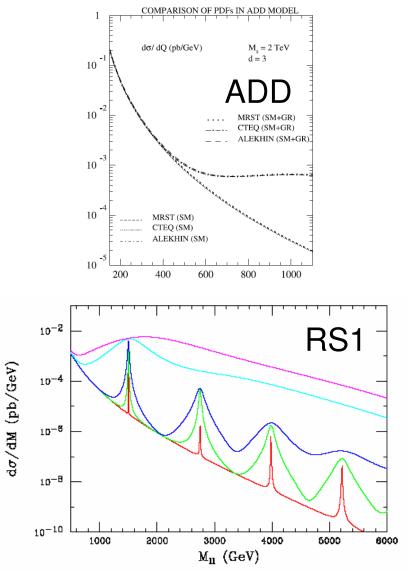
Adam Everett **PURDUE** UNIVERSITY

High Mass Dimuon Spectrum Experimental Aspects

- CMS Detector
- Muon Reconstruction
 - Resolutions and Efficiencies
- Measuring Efficiencies from Data

Discovery potential and reach

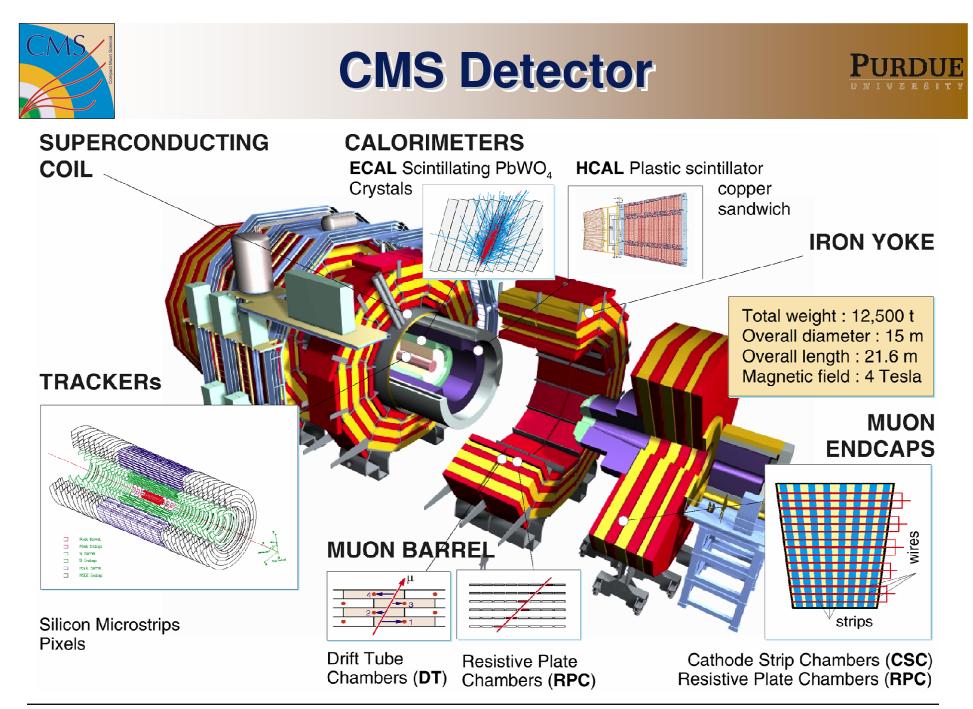
- Extra dimensions
- $Z' \rightarrow \mu^+ \mu^-$



Motivation: Dimuon Physics Signals

Many scenarios beyond the Standard Model are expected to manifest themselves through modifications in the mass spectrum of high-mass dimuon pairs.

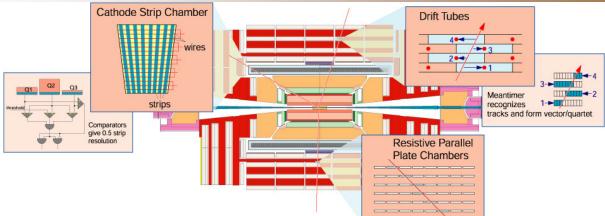
- Dimuon final states predicted in two classes of large extra dimension models
 - ADD (*Phy. Lett.* **B429** 263-272)
 - Observed via non-resonant modifications of the dimuon spectrum
 - RS (*Phys. Rev. Lett.* 83 3370-3373, 4690-4693)
 - Observed via relatively narrow resonances
- Discover dimuon decays of a new heavy neutral gauge boson
- Backgrounds
 - Drell-Yan, vector boson pair production, ttbar, etc.


High Mass Dimuon Spectrum

Experimental Aspects

- CMS Detector
- Muon Reconstruction
 - Resolutions and Efficiencies
- Measuring Efficiencies from Data

Discovery potential and reach

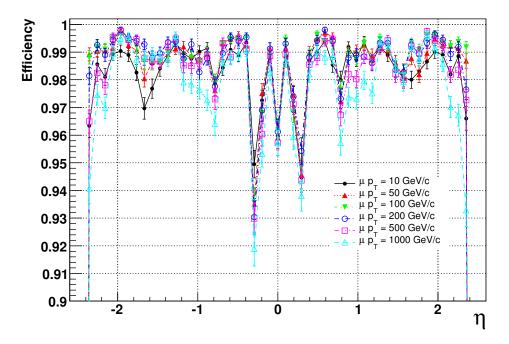

- Extra dimensions
- $Z' \rightarrow \mu^+ \mu^-$

Muon Detectors

CMS uses three types of gaseous particle detectors for muon identification Drift Tubes (DT): central barrel region ($|\eta| < 1.2$)

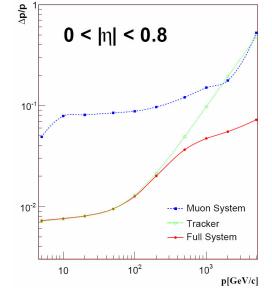
- 4 layers per superlayer; 2-3 superlayers per station
- Precise measurement of position and momentum:
 - Offline: 250 100 μ m; Online: ~2 mm

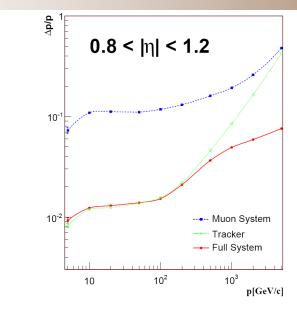
Cathode Strip Chambers (CSC): endcaps (0.8< $|\eta|$ <2.4)

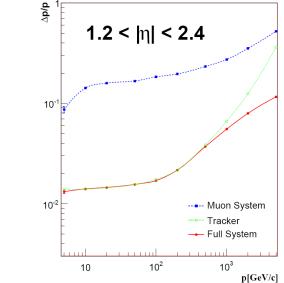

- 1 wire plane and 1 cathode plane with strips per gap; 6 gaps per chamber
- Precise measurement of position and momentum:
 - Offline: 100 μm; Online ~2mm

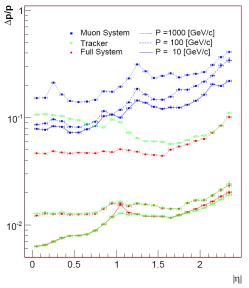
Resistive Parallel Plate Chambers (RPC): barrel and endcaps

- 1-2 PC per DT; 1 RPC per CSC
- Good spatial and time resolution: ~1 cm; ~2 ns

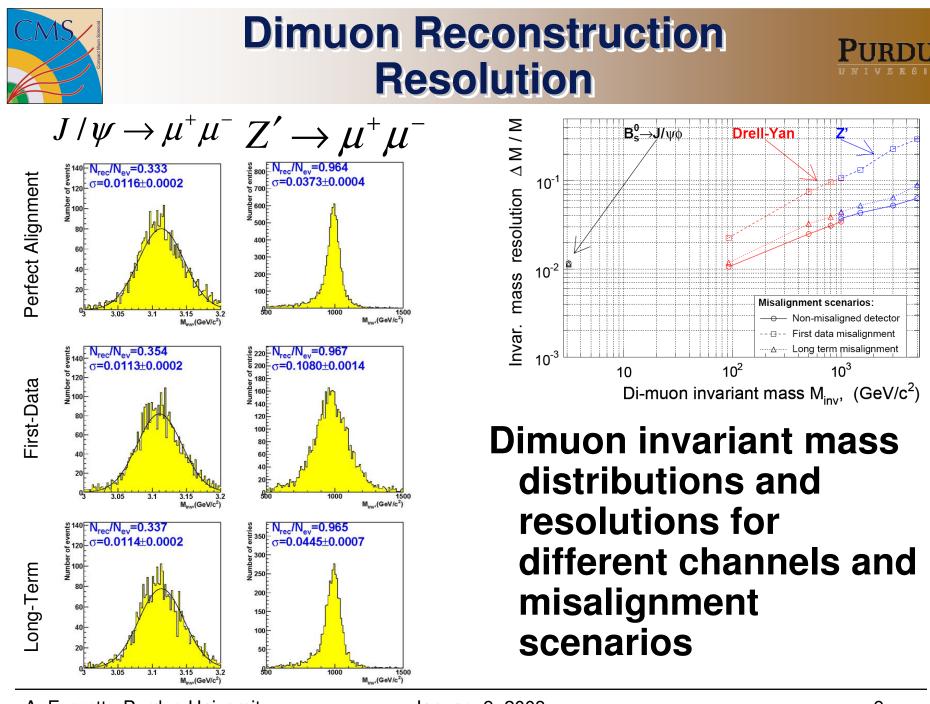

Muon Reconstruction Efficiency Purdu




Reconstruction of muons as a function of pseudorapidity as measured from Monte Carlo studies


- Efficiency is uniform over pseudorapidity
- Efficiency is uniform over energy of muons
- Some special optimization developed for high-energy muon reconstruction

Muon Reconstruction Resolution PURDUE



Muon p_t resolution as a function of momentum and pseudorapidity

- At low energy, central tracker dominates resolution
- At high energy, using the full detector improves resolution

High Mass Dimuon Spectrum Experimental Aspects

- CMS Detector
- Muon Reconstruction
 - Resolutions and Efficiencies
- Measuring Efficiencies from Data

Discovery potential and reach

- Extra dimensions
- $Z' \rightarrow \mu^+ \mu^-$

Search for new physics is performed by comparing the observed distribution of an opposite-sign muon pair with that expected from standard model processes

- Bump search, cross section measurement, etc.
- DY muon pair production is the dominant and irreducible background
 - Essential to measure and understand DY mass spectrum over a large range
- Event Selection
 - Online:
 - Each event must pass a single OR double muon path (L1 and HLT)
 - L1: pt > 7 GeV; pt > 3, 3 GeV
 - HLT (non-isolated): pt > 16 GeV; pt > 3, 3 GeV
 - Offline
 - At least two opposite-sign muons reconstructed

The overall dimuon efficiencies of the measurement are assumed to be the product of several parts

$$\mathcal{E} = \mathcal{E}_{\text{trigger}} \times \mathcal{E}_{\text{offline}}^{2}$$
$$\mathcal{E}_{\text{trigger}} = \mathcal{E}_{\text{L1}} \times \mathcal{E}_{\text{HLT}}$$
$$\mathcal{E}_{\text{offline}} = \mathcal{E}_{\text{global}} \times \mathcal{E}_{\text{isolation}} \times \mathcal{E}_{\text{id}}$$
$$\mathcal{E}_{\text{global}} = \mathcal{E}_{\text{standalone}} \times \mathcal{E}_{\text{tracker}} \times \mathcal{E}_{\text{matching}}$$

Methodology

central track

p_T > 30 GeV

isolated

PROBE u

central track ↓ p_T > 20 GeV

Tag-And-Probe method is a method to determine reconstruction efficiencies from physics processes

- GOAL: Efficiency table as a function of η and p_t
- used by electron/photon analyses; extensively used in CDF and DØ
 TAG μ

ffline and

isolated

rigger u

- Choose a reference process: $Z \rightarrow \mu^+ \mu^-$
 - Choose a tag muon: "high quality" reconstructed muon
 - Choose a *probe* track: probable muon based on criteria to study
- Requiring $M_{\mu\mu}$ consistent with M_Z yields a high-purity and almost unbiased sample of probe muons
 - Several different strategies for handling background
 - Side band subtraction, signal + bkgd. fit, etc.

Description of TAG and PROBE PURDUE

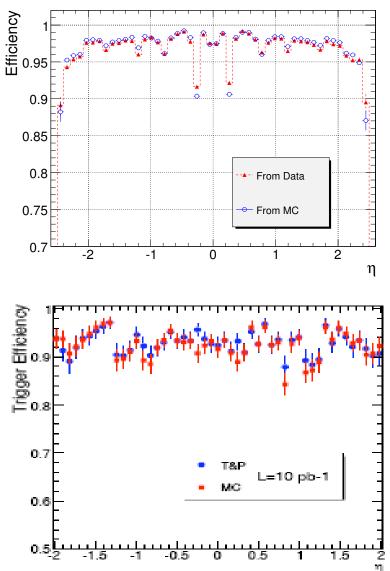
Tag Type	Description
Reconstruction	Global muon p _t > 30 GeV
Isolation	Isolated Global muon p _t > 20 GeV
Probe Type	Description
<u>G</u> olden	Global muon that is also a TAG
<u>M</u> atched	Global muon that is not a TAG
<u>U</u> nmatched	Tracker track AND Standalone muon found, but they are not associated with a Global Muon
<u>T</u> racker Only	Only a tracker track
Stand Alone Muon	Only a standalone muon
<u>I</u> solated	Isolated muon
<u>N</u> on-isolated	Non-isolated muon

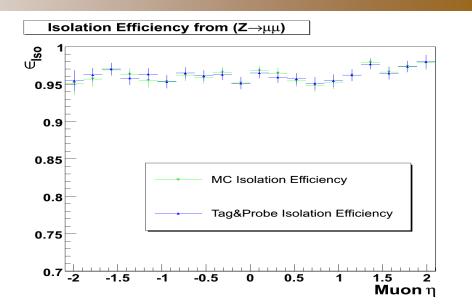
Standalone, Tracking, Matching, and Isolation efficiencies calculated with simple event counting

$$\mathcal{E}_{\text{standalone muon}} = \frac{2N_{GG} + N_{GM} + N_{GU}}{2N_{GG} + N_{GM} + N_{GU} + N_{GT}}$$
$$\mathcal{E}_{\text{tracker track}} = \frac{2N_{GG} + N_{GM} + N_{GU}}{2N_{GG} + N_{GM} + N_{GU} + N_{GS}}$$
$$\mathcal{E}_{\text{matching}} = \frac{2N_{GG} + N_{GM}}{2N_{GG} + N_{GM} + N_{GU}}$$
$$\mathcal{E}_{\text{isolation}} = \frac{2N_{II}}{2N_{II} + N_{IN} + N_{NI}}$$

Tag: Global muon with pt > 30 GeV

Probe: additional cuts minimize background


- Global muon (isolated)
 - p_T > 10 GeV
 - $\Delta \phi_{\text{Tag,Probe}} > 1.5$
- Standalone muon (isolated)
 - p_T > 10 GeV
 - $\Delta \phi_{\text{Tag,Probe}} > 1.5$

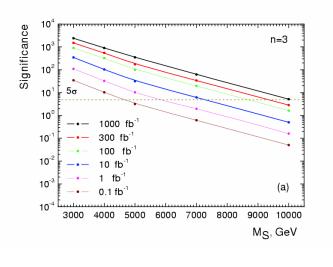

Tracker track (isolated)

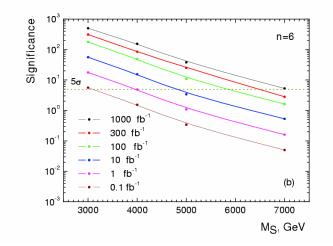
- p_T > 15 GeV
- $\Delta \phi_{\text{Tag,Probe}} > 1.5$
- Isolation Study
 - $P_t > 20 \ GeV$, $|\eta| < 2.0$, $M_{\mu\mu} \in (70, 110) GeV$

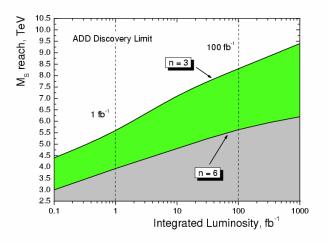
Tag and Probe Results (Reco)

Efficiencies from Tag-and-Probe method are compatible with efficiencies calculated from Monte Carlo studies

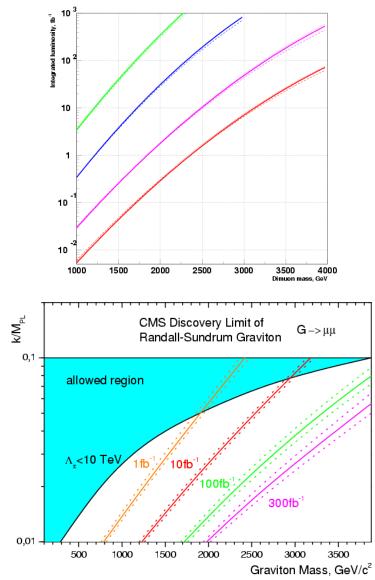
High Mass Dimuon Spectrum Experimental Aspects


- CMS Detector
- Muon Reconstruction
 - Resolutions and Efficiencies
- Measuring Efficiencies from Data


Discovery potential and reach

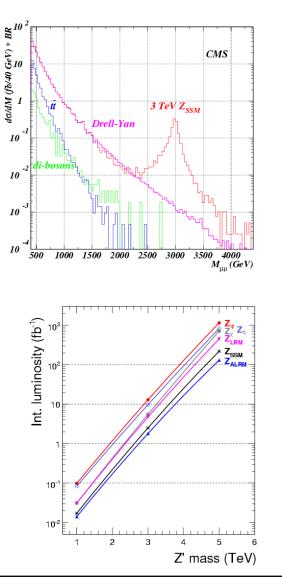

- Extra dimensions
- $Z' \rightarrow \mu^+ \mu^-$

Discovery Potential (ADD)


Significance as a function of the mass scale for 3 and 6 extra dimensions

Discovery reach on M_s as a function of luminosity

Discovery Potential (RS)


Integrated luminosity required for a discovery for various values of the coupling c= 0.01, 0.02, 0.05 and 0.1 (from top to bottom)

Discovery reach for various luminosities.

Discovery Potential (Z')

Cross section times the branching ratio for 3 TeV Z' of the Sequential Standard Model (red) as a function of the $\mu+\mu$ invariant mass $M\mu\mu$, compared with the production of muon pairs in a few main background sources.

Integrated luminosity required for a 5-sigma discovery as a function of the Z' mass for various Z' models.

Conclusion

CMS Detector optimized for muon detection

New Physics signals in high-mass resonances

- New bosons
- Extra dimensions

Special Optimization and Methods developed for detecting high energy muons and measuring efficiencies and resolutions from data

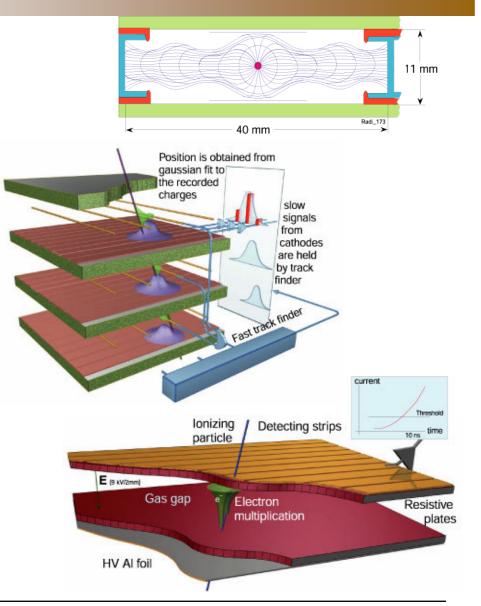
Local Reconstruction

DT Local Reconstruction

Single cell: drift time is converted to position with respect to the wire

 $R{\-}\phi$ and $R{\-}\theta$ views reconstructed independently

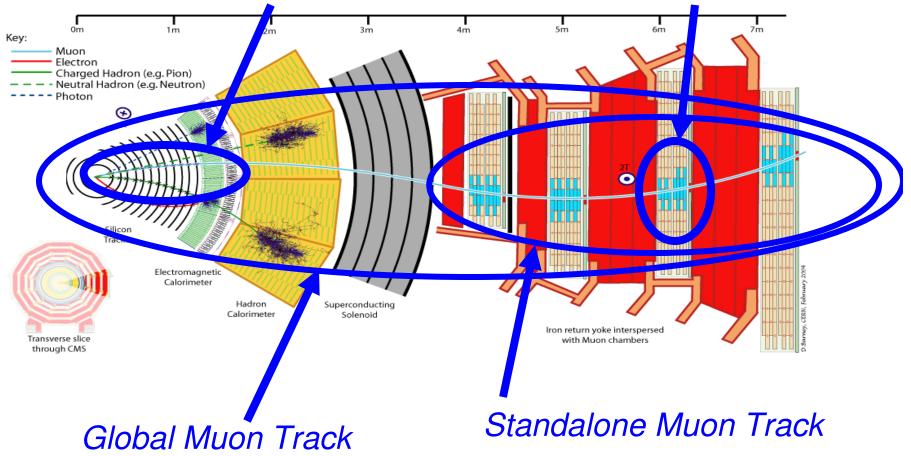
In superlayer R- ϕ : $\sigma \approx 146 \ \mu m$


CSC Local Reconstruction Build 2D points:

- ϕ measured by strips
- R measured by wires

Build segment: fit 2D points from 6 layers

Position resolution: $\sigma \approx$ 100÷200 μm


RPC Local Reconstruction Strips in double gap measure φ Primarily for trigger use, but still used in reconstruction

Muon in Silicon Tracker

Hits and Track Segments

Software Design

Level-1 Trigger

- The only CMS hardware trigger
- Level-1 Trigger gives us a physics object (pt, direction, etc.)

Offline and High-Level Trigger (HLT)

- Reconstruction software: reusable for offline and HLT
- Require seeds initial values of 5 trajectory parameters
 - Level-1 Trigger provides seed for HLT
 - Segments chambers provide offline seed
- Offline reconstruction makes use of complete calibration, alignment, etc.

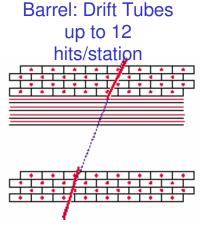
Requirements

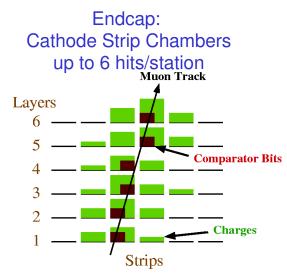
- Object-Oriented design
- Flexibility to adapt to unforeseen conditions and cope with imperfect detector
- Scheduled Reconstruction: reject events as soon as possible
- Regional reconstruction
 - Use data in a region around a seed
 - Reconstruction/selection applied to seed regions only

Standalone Muon Reconstruction

All muon detectors (DT, CSC and RPC) are used

Seed generation:

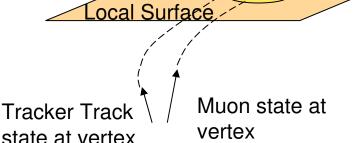

- Online: Level-1 trigger \rightarrow Level-2 reconstruction
- Offline: patterns of muon system segments


Fit:

- Kalman filter technique applied to DT/CSC/RPC measurements
 - Use segments in barrel and 3D hits in endcaps
- Trajectory building works from inside out
- Apply χ^2 cut to reject bad hits
- Track fitting works from outside in
- Fit track with beam constraint

Propagation:

- Non constant magnetic field
- Propagation through iron between stations



Global Muon Reconstruction PURDUE

- Start from standalone reconstructed muon
- Online
 - Tracker Seed based on Level-2 standalone muon
 - Regional Tracker track reconstruction from Seed
 - Propagate from innermost layers out
 - Resolve ambiguities
 - Final fit of trajectories

Muon on Surface

Offline

- Tracker tracks already reconstructed
- Match best tracker track to standalone muon
- Refit of both tracks' information

Tk Track on Surface